If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-36=-19x
We move all terms to the left:
6x^2-36-(-19x)=0
We get rid of parentheses
6x^2+19x-36=0
a = 6; b = 19; c = -36;
Δ = b2-4ac
Δ = 192-4·6·(-36)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-35}{2*6}=\frac{-54}{12} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+35}{2*6}=\frac{16}{12} =1+1/3 $
| 3(m+3)=9-3m | | 10c+7=24 | | 6-2(x+4)-4x=7+3(x+5)-6 | | 7^(3x-6)-343^(4x+1)=327 | | 4z+5=9 | | 3/2-3c+4=5/2c+7-3 | | -19(n-11)=494 | | -9=b/8-11 | | 34+p=52;18,19,20 | | 3/2y-1=14 | | 5(d+8)=95 | | -3*1+y-9=4 | | 4z+7=-1 | | 430=10g | | 3x+21=9x-9 | | 0.4/0.7=2/w | | 5(x+1)^2-4=76 | | (12x-7)+(16x+19)=180 | | 3=3j-12 | | 6y+108-(y=14) | | -5(2+x)=-60 | | 2x-3*2+8*(-5)=14 | | 9w=45,3,4,5 | | 4x^2-7=205 | | 15-3f=3 | | 2.3x+1.5=1.5x-0.8 | | y-13=24,37,38,39 | | 5x+23=2*4-5 | | 7z+6=-8 | | 45-k=27;17,18,19 | | 7(a+1)-3a=4+4(2a-1) | | -10(x+5)=-44-10x |